在鎳鈷錳三元材料中,過渡金屬元素Ni、Co、Mn對材料性能的作用各不相同。其中,Ni元素的含量越高,可以為材料提供高的比容量,但是在充電狀態下,Ni4+極其不穩定,容易引發材料安全性問題;Co元素的含量越高可以減輕材料的陽離子混排程度,但是會使材料的成本顯著提高;Mn元素的含量越高可以穩定材料的結構,但是會使材料的放電比容量明顯降低。因此,不同Ni、Co、Mn比例的材料其性能也不相同
三元材料作為粉末晶體材料之一,適用于制備粉末晶體的技術和方法,如共沉淀法、高溫固相法、溶劑熱技術、溶膠-凝膠法等。其中不同合成方法,所制得的三元正極材料前驅體形貌、顆粒尺寸均勻性千差萬別,繼而經過混鋰煅燒后,所得三元正極材料具有不同的孔結構和顆粒尺寸,導致材料的結晶度程度、離子混排程度、脫嵌鋰離子動力學、材料結構穩定性和電化學性能存在明顯差異,突顯了制備技術的重要性。
探索高性能三元正極材料LiNi1-x-y Cox Mny O2 的制備方法,主要是通過改變合成路徑、改變反應條件。具體表現在,一是對制備技術的優化更進,二是對已制備三元正極材料進行修飾改性包括摻雜(微調晶格參數,提升層狀結構穩定性)或是包覆修飾(隔絕與電解液的物理接觸,提高材料的離子和電子傳導能力),或是制備核殼結構及濃度梯度材料,通過修飾改性的手段提高和改善三元正極材料的物理和電化學性能。
高鎳NCM 正極材料性能很大程度上取決于顆粒的尺寸和形貌,因此制備方法大多集中于將不同原料均勻分散,得到小尺寸、比表面積大的球形顆粒。通過不同的制備技術制備的材料顆粒尺寸和孔結構存在明顯差別,從而影響材料的結晶度程度、離子混排程度、脫嵌鋰離子動力學、材料結構穩定性和電化學性能。